Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cells ; 11(21)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2090009

ABSTRACT

Low back pain is a clinically highly relevant musculoskeletal burden and is associated with inflammatory as well as degenerative processes of the intervertebral disc. However, the pathophysiology and cellular pathways contributing to this devastating condition are still poorly understood. Based on previous evidence, we hypothesize that tissue renin-angiotensin system (tRAS) components, including the SARS-CoV-2 entry receptor angiotensin-converting enzyme 2 (ACE2), are present in human nucleus pulposus (NP) cells and associated with inflammatory and degenerative processes. Experiments were performed with NP cells from four human donors. The existence of angiotensin II, angiotensin II type 1 receptor (AGTR1), AGTR2, MAS-receptor (MasR), and ACE2 in human NP cells was validated with immunofluorescent staining and gene expression analysis. Hereafter, the cell viability was assessed after adding agonists and antagonists of the target receptors as well as angiotensin II in different concentrations for up to 48 h of exposure. A TNF-α-induced inflammatory in vitro model was employed to assess the impact of angiotensin II addition and the stimulation or inhibition of the tRAS receptors on inflammation, tissue remodeling, expression of tRAS markers, and the release of nitric oxide (NO) into the medium. Furthermore, protein levels of IL-6, IL-8, IL-10, and intracellular as well as secreted angiotensin II were assessed after exposing the cells to the substances, and inducible nitric oxide synthase (iNOS) levels were evaluated by utilizing Western blot. The existence of tRAS receptors and angiotensin II were validated in human NP cells. The addition of angiotensin II only showed a mild impact on gene expression markers. However, there was a significant increase in NO secreted by the cells. The gene expression ratios of pro-inflammatory/anti-inflammatory cytokines IL-6/IL-10, IL-8/IL-10, and TNF-α/IL-10 were positively correlated with the AGTR1/AGTR2 and AGTR1/MAS1 ratios, respectively. The stimulation of the AGTR2 MAS-receptor and the inhibition of the AGTR1 receptor revealed beneficial effects on the gene expression of inflammatory and tissue remodeling markers. This finding was also present at the protein level. The current data showed that tRAS components are expressed in human NP cells and are associated with inflammatory and degenerative processes. Further characterization of the associated pathways is warranted. The findings indicate that tRAS modulation might be a novel therapeutic approach to intervertebral disc disease.


Subject(s)
Nucleus Pulposus , Renin-Angiotensin System , Humans , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Interleukin-10/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Nucleus Pulposus/cytology , Nucleus Pulposus/metabolism , Receptor, Angiotensin, Type 1/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Cells ; 10(3)2021 03 15.
Article in English | MEDLINE | ID: covidwho-1136461

ABSTRACT

Evidence has arisen in recent years suggesting that a tissue renin-angiotensin system (tRAS) is involved in the progression of various human diseases. This system contains two regulatory pathways: a pathological pro-inflammatory pathway containing the Angiotensin Converting Enzyme (ACE)/Angiotensin II (AngII)/Angiotensin II receptor type 1 (AGTR1) axis and a protective anti-inflammatory pathway involving the Angiotensin II receptor type 2 (AGTR2)/ACE2/Ang1-7/MasReceptor axis. Numerous studies reported the positive effects of pathologic tRAS pathway inhibition and protective tRAS pathway stimulation on the treatment of cardiovascular, inflammatory, and autoimmune disease and the progression of neuropathic pain. Cell senescence and aging are known to be related to RAS pathways. Further, this system directly interacts with SARS-CoV 2 and seems to be an important target of interest in the COVID-19 pandemic. This review focuses on the involvement of tRAS in the progression of the mentioned diseases from an interdisciplinary clinical perspective and highlights therapeutic strategies that might be of major clinical importance in the future.


Subject(s)
Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , COVID-19/metabolism , Peptidyl-Dipeptidase A/metabolism , Receptors, Angiotensin/metabolism , Renin-Angiotensin System/drug effects , Aging/metabolism , Aging/pathology , Animals , Autoimmunity/drug effects , Autoimmunity/genetics , COVID-19/genetics , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Receptors, Angiotensin/genetics , Regeneration/drug effects , Regeneration/genetics , Regeneration/physiology , Renin-Angiotensin System/genetics , Renin-Angiotensin System/physiology , Vulvodynia/immunology , Vulvodynia/physiopathology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL